April 1987

Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics 289

Reprinted from the Journal of the American Ceramic Society, Vol. 70, No. 4, April 1987
Copyright 1987 by The American Ceramic Society

Crack-Interface Grain Bridging as a Fracture

Resistance Mechanism in Ceramics:

I1, Theoretical

Fracture Mechanics Model

YIU-WING MAI' and BRIAN R. LAWN*

Ceramics Division, National Bureau of Standards, Gaithersburg, Maryland 20899

A fracture mechanics model is developed for nontransforming
ceramics that show an increasing toughness with crack exten-
sion (R-curve, or T-curve, behavior). The model derives from
the observations in Part I, treating the increased crack re-
sistance as the cumulative effect of grain bridging restraints
operating behind the advancing tip. An element of discreteness
is incorporated into the formal distribution function for the
crack-plane restraining stresses, to account for the primary
discontinuities in the observed crack growth. A trial force-
separation function for the local bridge microrupture process
is adopted, such that an expression for the microstructure-
associated crack driving (or rather, crack closing) force may
be obtained in analytical form. The description can be made to
fit the main trends in the measured toughness curve for a
coarse-grained alumina. Parametric evaluations from such fits
conveniently quantify the degree and spatial extent of the
toughening due to the bridging. These parameters could be
useful in materials characterization and design. It is suggested
that the mechanics formulation should be especially applicable
to configurations with short cracks or flaws, as required in
strength analysis.
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I. Introduction

WE HAVE presented direct experimental evidence in Part I for
a mode of crack restraint by grain-localized interfacial
bridging behind the advancing tip.' The suggestion was made that
this mode of restraint is probably a dominant mechanism of
R-curve behavior in ceramics, at least in nontransforming ce-
ramics. Consequently, there is a need to develop a suitable fracture
mechanics model, to establish a sound basis for materials design.

This need constitutes the primary driving force for Part II of our
study. We shall derive a formulation for the crack resistance as an
increasing function of crack size, bounded in the lower limit by
some intrinsic toughness (determined by bulk cleavage or grain
boundary energies) and in the upper limit by the macroscopic
toughness (representative of the microstructural composite). Fol-
lowing Part I, we shall again take coarse-grained alumina as our
representative material, using the measured scaling dimensions for
the interfacial bridging process as a basis for quantitative analysis
of the observed R curve (or, as we shall come to call it, the T
curve). In setting up our model we will be particularly mindful of
the discontinuous (yet highly stable) nature of the crack growth
during the loading to failure, most notably in the strength configu-
rations.' Speaking of strength configurations, the present analysis
supersedes that described in an earlier study using controlled
flaws,>* where the microstructural contribution to the fracture
mechanics was introduced empirically without reference to any
specific toughening mechanism.

An important feature of our modeling will be the capacity for
separating out the fracture mechanics from the material character-
istics. Essentially, our formalism requires us to specify a local
force-separation relation for the restraining interfacial ligaments.
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Our observations in Part I provide little clue as to what funda-
mental material quantities should appear in this relation, but they
contain some indications as to the form (i.e., pronounced tail) and
spatial extent (i.e., as determined by the critical bridging dimen-
sions referred to above) of the functional dependence. It is thus
inevitable that our treatment, while structured on a well-confirmed
physical separation model, will retain an element of empiricism.
We shall make use of precedents set elsewhere in deciding on an
appropriate function for our alumina. This approach will preclude
us from making a priori predictions of R-curve behavior in other
materials. Accordingly, questions as to why R-curve behavior is so
variable from material to material (even for materials of the same
nominal composition, differing only in the grain boundary struc-
tures),> are posed as important topic areas for future researchers.
Conversely, our formulation will enable us to describe the com-
plete crack resistance behavior for a given material without explicit
knowledge of the fundamental underlying separation relations.

Once again, let us foreshadow one of the ultimate goals of our
study, to account for the anomalous strength characteristics shown
by materials with strong R-curve behavior.” In this paper we shall
confine ourselves to qualitative explanations of some of the more
distinctive features of the crack response from indentation flaws,
namely, the relative insensitivity of failure stress to flaw size at low
loads and the associated growth discontinuities. A detailed quan-
titative treatment of the problem, in which the indentation-strength
data are inverted to obtain the R curve, will be given elsewhere.*

II. Interfacial Crack Restraint Model

In this section we develop a fracture mechanics model for a
crack restrained at its newly formed interface by distributed closure
forces. These closure forces are identified with unruptured bridges
whose specific nature is determined by the ceramic microstructure.
As such, the restraint is analogous to that considered in the fiber-
reinforced ceramic composite models,>” although the underlying
microstructural rupture mechanisms in the monophase materials of
primary interest here may be of an entirely different kind. We shall
begin with a general statement of the crack resistance problem and
progressively introduce factors specific to the processes described
in Part .

(1) General Statement of Crack Resistance Problem

Our analysis here is based on equilibrium fracture mechanics,
i.e., on the Griffith notion that a crack is on the verge of extension
when the net mechanical driving force on the system is just equal
to the intrinsic resistance (toughness) of the material.® The equi-
librium can be stable or unstable, depending on the crack-size
variation of the opposing force terms. The terminology “R curve”
derives from energy release rate (G) considerations, where
R = R(c) is the crack-size-dependent fracture surface energy of
the material. Here we shall work instead with stress intensity
factors (K') because of their simple linear superposability, replacing
R with an analogous toughness parameter T = T(c): hence our
preference for the term “T curve”.’

Our starting point is a general expression for the net stress
intensity factor for an equilibrium crack:®

K=K, + 2K =T, (1

K., — K.(c) is the familiar contribution from the applied loading.
The terms K; = K;(c) represent contributions from any “‘internal”
forces that might act on the crack, such as the microstructure-
associated forces that we seek to include here. T, is taken to be the
intrinsic material toughness (i.e., the effective K for bulk cleav-
age or grain boundary fracture), strictly independent of crack size.
Of the individual K terms in Eq. (1) it is only K, which is moni-
tored directly, via the external loading system, in a conventional
fracture test. Consequently, it has become common practice to
regard the K; terms implicitly as part of the toughness character-
istic. This philosophy is formalized by rewriting Eq. (1) in
the form®
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The quantity T = T(c) defines the effective toughness function, or
T curve. To obtain a rising 7 curve, the K;(c) functional depen-
dencies must be either positive decreasing or negative increasing.

The existence of a rising T curve introduces a stabilizing influ-
ence on the crack growth. We have alluded to such stabilization
repeatedly in Part I. From Eq. (1), the condition for the equi-
librium to remain stable is that dK/dc < 0° (recalling that
dT,/dc = 0). Conversely, the condition for instability is that
dK /dc > 0 (although satisfaction of this condition does not
always guarantee failure; see Section IV). In terms of Eq. (2) the
corresponding stability/instability conditions are expressible as
dK,./dc S dT/dc. This latter forms the basis for the conventional
T-curve (R-curve) construction.

(2) Microstructure-Associated Stress Intensity Factor

Now let us consider the way in which the microstructural crack
restraining forces may be folded into the fracture mechanics de-
scription. Specifically, we seek to introduce the effect of re-
straining bridges behind the growing crack tip as an internal stress
intensity factor K; = K,.. We shall focus specifically on line cracks
in this paper, although this should not be seen as restricting the
general applicability of the approach.

The configuration on which our model is to be based is shown
in Fig. 1. The interfacial bridging ligaments are represented by the
array of force centers (circles) projected onto the crack plane. (This
array is depicted here as regular but in reality of course there will
be a degree of variability in the distribution of centers.) Here ¢ is
the distance from the mouth to the front of the crack and d is the
mean separation between closure force centers. Note that at very
small crack sizes, ¢ < do, where d, is the distance to the first
bridge (not necessarily identical with d; see Section III), the front
encounters no impedance. As the front expands, bridges are acti-
vated in the region do = x =< c. These bridges remain active until,
at some critical crack dimension ¢* (>d), ligamentary rupture
occurs at those sites most remote from the front. Thereafter a
steady-state activity zone of length ¢* — d, simply translates with
the growing crack.

This configuration would appear to have all the necessary ingre-
dients to account for the most important features in the crack
response observed in Part I. The enhanced stability arises from the
increasing interfacial restraint as more and more bridging sites are
activated by the expanding crack. The discontinuous nature of the
growth follows from the discreteness in the spatial distribution of
closure forces at the crack plane. Thus the initial crack may be-
come trapped at first encounter with the bridge energy barriers. If
these barriers were to be sufficiently large the entire crack front
could be retarded to the extent that, at an increased level of applied
stress, the next increment of advance would occur unstably to the
second set of trapping sites (pop-in). With further increase in
applied stress the process could repeat itself over successive barri-
ers, the jump frequency increasing as the expanding crack encom-
passes more sites within its front. There is accordingly a smoothing
out of the discreteness in the interfacial restraints as the crack
grows larger until ultimately, at very large crack sizes, the distribu-
tion may be taken as continuous.

In principle, we should be able to write down an appropriate
stress intensity factor for any given distribution of discrete re-
straining forces of the kind depicted in Fig. 1. Unfortunately, the
formulation rapidly becomes intractable as the number of active
restraining elements becomes larger. To overcome this difficulty
we resort to an approximation, represented in Fig. 2, in which
the summation over discrete forces F(x) is replaced by an integra-
tion over continuously distributed stresses p(x) = F(x)/d*. These
stresses have zero value in the region x < d,, reflecting the neces-
sary absence of restraint prior to intersection of the first bridging
sites. They have nonzero value in the region do < x < c up to the
crack size at which ligamentary rupture occurs (do = ¢ = ¢*), and
thereafter in the region dp + ¢ — ¢* < x < ¢ where a steady-
state configuration obtains (¢ > ¢*). This approximation is tanta-
mount to ignoring all but the first of the discontinuous jumps in the
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Fig. 1. Schematic of bridging model. O denotes ori-
gin, C front, of crack. Circles indicate bridges; open
circles denote active sites, closed circle potential sites.

observed crack evolution. We might consider such sacrifice of part
of the physical reality to be justifiable in those cases where the
critical crack configuration encompasses many bridging sites, as
perhaps in a typical strength test.*

The problem may now be formalized by writing down a
microstructure-associated stress intensity factor in terms of the

familiar Greens function solution for line cracks:*'*"
K.,=0 (do > ¢©) (3a)
K. = —Qy¢/m)c"? J: px)dx)/(c? — x*)"?
(do=c=c*) (b
K, = —Q¢/m)c"? J’FP(x)d(x)/(Cz - x)'"?

dote—c*
(c > c*) (3c)

where i is a numerical crack geometry term (= "%). At this point
another major difficulty becomes apparent. We have no basis,
either theoretical or experimental, for specifying a priori what
form the closure stress function p(x) must take. On the other hand,
we do have some feeling from Part I, albeit limited, as to the
functional form p(u), where u is (one half) the crack opening
displacement. Moreover, it is p(u) rather than p(x) which should in
principle (if not readily in practice) be amenable to independent
experimental or theoretical determination. Thus, given knowledge
of the crack profile, we should be able to replace x by u as the
integration variable in Eq. (3), and thereby proceed one step closer
to a solution.

However, even this step involves some uncertainty, since the
crack profile itself is bound to be strongly influenced by the dis-
tribution of surface tractions; i.e., u(x) strictly depends on p(x)
(as well as on the applied loading configuration), which we have
just acknowledged as an unknown. A proper treatment of the
fracture mechanics in such cases leads to a nonlinear integral
equation,’ for which no analytical solutions are available. With this
in mind we introduce a simplification by neglecting any effect that
the tractions might have on the shape of the profile, yet at the same
time taking due account of these tractions, via the way they modify
the net driving force K in Eq. (1), in determining the magnitude
of the crack opening displacements. Accordingly, we choose the
familiar near-field solution for a slitlike crack in equilibrium, i.e.,
at K = To,lo‘“

u(x,c) = (V8YIo/mE) (¢ — x)" @)
where E is Young’s modulus. Substitution of Eq. (4) into Eq. (3)
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Fig. 2. Representation of bridging restraint over crack
plane by continuous closure stress distribution. Distribu-
tions shown for three crack lengths ¢ relative to do and ¢*
(see Fig. 1).

then gives, in the approximation do — ¢ (e.g., specimens with
large notches; see Section III)

K.=0 (do>¢) (5a)
u(do, )

K, = —(E/To) plu) du (do = ¢ =% (5b)

K, = —(E/T,) J’u p(u)du (c > c*) (5¢)

We point out that u* = u(d,, c*) is independent of ¢, so K, cuts
off at ¢ = c*.

Thus by sacrificing self-consistency in our solutions, we have ob-
tained simple working equations for evaluating the microstructure-
associated stress intensity factor. We have only to specify the
stress-separation function, p(u).

(3) Stress-Separation Function for Interfacial Bridges

The function p(u) is determined completely by the micro-
mechanics of the ligamentary rupture process. We have indicated
that we have limited information on what form this function should
take. Generally, p(x) must rise from zero at u = 0 to some maxi-
mum, and then tail off to zero again at the characteristic rupture
separation u*. There are instances in the literature where the rising
portion of the curve is the all-dominant feature, e.g., as in brittle-
fiber-reinforced composites where abrupt failure of the ligaments
cuts off an otherwise monotonically increasing frictional re-
straining force.> On the other hand, there are cases where the tail
dominates, as in concretes where the separation process is much
more stable. Our observations on the alumina in Part I would
suggest that it is the latter examples which relate more closely to
the polycrystalline materials of interest here. Moreover, specific
modeling of one of the potential separation factors alluded to in
Part I, frictional pullout of interlocking grains, does indeed result
in a monotonically (linearly) decreasing p(u) function.'?

Thus we are led to look for a trial stress separation function
which is tail-dominated. The function we choose is

pw) = p*(1 — u/u*)” (0= u = u*) (6)

where p* and u* are limiting values of the stress and separation,
respectively, and m is an exponent. This equation is illustrated by
the solid curves in Fig. 3 for three values of m: m = 0 is the
simplistic case of a uniformly distributed stress over the bridging
activity zone; m = 1 corresponds to the frictional pullout mech-
anism just mentioned;'* m = 2 is the value adopted empirically for
fiber concretes." As we shall see, m reflects most strongly in the
way that the ultimate T curve cuts off in the large crack size limit.
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Fig. 3. Trial stress-separation function p(u) for three
values of exponent m in Eq. (6). Broken curve is more
“realistic” function.

Note that the representation is extreme in the sense that it totally
ignores the rising portion of p(u) (cf. the broken curve in Fig. 3).

Equation (6) may now be substituted into Eq. (5) and the inte-
gration carried out to give

K.=0 (do > ¢) (Ta)
Ku = —=(T. = To){l = [1 —{(c — do)/(c* — do)}"*]"""}

(do = ¢ = %) (7b)
Kpn=-T-—-To) (c>c* (7¢)

where we have made use of Eq. (4) to eliminate u* = u(d,, c*) in
favor of ¢*, i.e.

¢* = dy + (TEu*/2V2 YT,)> ®)
and where we have defined
T. =T, + Ep*u*/(m + 1T, &)

to eliminate p*,

II1. . Crack Resistance Curve

We are now in a position to generate the effective toughness
function from Eq. (2), i.e.

T(C) = T() - K,,_(C) (10)

once the parameters T, T=, ¢*, dy, and m are known for any given
material. Here we shall focus on the derivation of these parameters
for coarse-grained alumina, leaving consideration of the crack
stability (including the grain-scale discontinuities in growth re-
ferred to in Part I) to the Discussion (Section IV).

Usually, crack resistance data are obtained from test configu-
rations which employ a starter notch, as introduced, for example,
by sawcutting. The use of such a notch, in addition to providing a
favorable geometry for running the crack, conveniently establishes
the origin of extension at the base of the T curve. We now need to
transform our coordinates, as defined in Fig. 4; we have ¢ = ¢, +
Ac, do = co + d, where ¢, is the notch length. Combining
Eqgs. (7) and (10) then gives

T(Ac) = T, (d > Ac) (11a)
T(Ac) = T — (T — Ty)
x {1 - [(Ac = d)/(Ac* — &)]"}"!
(d =Ac =Ac*)  (11b)
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Fig. 4. Coordinates for crack system with starter
notch. Effect of notch is to remove all “memory” of
bridging restraints over OO’, equivalent to redefining
the crack origin at O’. Circles indicate bridging sites as
in Fig. 1.

T(Ac) = T- (Ac > Ac*) (11¢)

Thus within the limits of the approximations used here (most
notably the “small-scale zone” approximation used to derive
Eq. (5)), we obtain a T curve which is geometry insensitive, i.e.,
independent of c,. Note also that the steady-state bridging zone
length from Eq. (8)

Ac* = d + (wEuw*/2V2 yTo)? (12)

is likewise geometry insensitive. We shall have more to say about
this in Section IV. At this stage the rationale for our parameter
definitions becomes apparent: T, and 7.. define the lower and upper
bounds, and Ac* the spatial extent, of the T curve.

To illustrate the applicability of the formulation we examine the
degree of fit of Eq. (11) to some experimental data, provided to us
by M. V. Swain on a coarse-grained alumina. The material tested
by Swain was of closely similar microstructure to that of the
alumina used by us in Part I, i.e., reasonably large grain size
(16 wm; cf. 20 wm in Part I) and nominally pure composition. He
used rectangular double cantilever beam (DCB) specimens, dimen-
sions 50 by 8 by 5 mm, notch length 11 mm, to obtain his crack
data. These particular data were chosen over others in the literature
because of the special precautions taken to minimize specimen end
effects (see Section IV). Swain’s results are plotted as the data
points in Fig. 5. The theoretical fits, shown as the solid curves for
fixed exponents m = 0, 1, and 2, were computed for trial values
of d = 50 um (=3 grain diameters) and Ac* = 10 mm (=600
grain diameters) in accordance with the estimates from Part I, with
To and T. as regression adjustables.

A word of caution is in order here. Any “goodness of fit” that
we might consider evident in Fig. 5 may properly be taken as
lending credence to our model. However, it should not be seen as
constituting proof of our model. In essence, our equations contain
five parameters whose values are, to a greater or lesser extent,
unknown a priori. Thus, for instance, the accuracy of the fit is not
sensitive to the trial value of d, but it is sensitive to Ac* (reflecting
the fact that the DCB data are weighted toward the region
Ac > d). Such sensitivity to the choice of any one parameter
inevitably contributes to the uncertainty in the other parameters.
Consequently, despite all outward appearances in Fig. 5, we would
be reluctant to assert that m = 0 is the “true” value of the tough-
ness exponent.

Notwithstanding these uncertainties in the parameter deter-
minations, we may usefully estimate the force-separation parame-
ters p* and u* in Eq. (6). Thus, substituting E = 400 GPa,
¢ = 7' (ideal line cracks), along with the best-fit values of Ty,
into Eq. (12) gives u* = 1 um (independent of m). This is of the
order of the crack opening displacements evident in the micro-
graphs in Part 1. Further substitution together with the regressed 7.
values into Eq. (9) gives p* = 25 MPa (m = 0), 40 MPa
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Fig. 5. Fit of Eq. (11) to double cantilever beam (DCB) toughness data
on coarse-grained alumina. Fits are for d = 50 um, Ac* = 10 mm,
and m = 0, 1, and 2, with T, and 7. as adjustables. (Data courtesy
M. V. Swain.)

(m = 1),and 55 MPa (m = 2). If these stress levels seem low, we
may note that the composite quantity p*u*/(m + 1), which repre-
sents the work per unit area to separate the bridges across the
fracture plane (see integral in Eq. 5(c)), is of order 20 J-m 7, i.e.,
comparable with typical fracture surface energies.

Finally in this section, let us note that we have yet to address the
issue of crack instabilities in the T-curve characteristic. Recall that
our analysis smoothes out all but the very first bridge discontinuity,
i.e., atc = do; the data in Fig. 5 are insufficiently detailed in this
region to allow any quantitative resolution of this question. We
need to go to short-crack configurations. An account of the T-curve
construction for such configurations is deferred to Section IV.

IV. Discussion

We have derived a T-curve (R-curve) model based on bridging
tractions at the crack interface behind the advancing tip. The model
contains several adjustable parameters, but parameters to which we
may nonetheless attach physical meaning. Thus the spatial parame-
ters ¢* (Ac*) and d, respectively, define the range of the T curve
and the characteristic separation between bridging elements. The
toughness parameters T, and T- respectively define the base crack
resistance in the absence of microstructural restraints (lower limit
to T curve) and the macroscopic crack resistance (upper limit).
Then we have the parameters m, p*, and u*, which determine the
empirical force-separation “law” for the bridging process. These
parameters, once evaluated for a given material, could be useful in
structural design.

It is instructive to consider how the present treatment of the
microstructural contribution to crack resistance characteristics dif-
fers from that proposed in an earlier study of indentation-strength
systems.”? In that study the microstructure-associated stress in-
tensity factor K, (cf. K,, used in this work) was introduced in terms
of an empirical grain-localized driving force at the radial crack
center, in direct analogy to the (well-documented) residual-contact
force field.'*"> There, K,, was defined as a positive term de-
creasing with respect to crack size, with T as the reference tough-
ness level (i.e., the level at which K, = 0). Here, K,, is defined
as a negative (closure) term increasing with respect to crack size,
with T, to the reference toughness level (K, = 0). Conventional
fracture mechanics measurements, i.e., measurements of crack
size as a function of applied load, cannot in themselves distinguish
between these two alternative K descriptions. It is in this context
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that the direct observations in Part I may be seen as critical. More-
over, the new model has its roots in a positively identifiable tough-
ening mechanism, so taking us one step closer to a fundamental
base for a priori predictions.

However, it needs to be reemphasized that the element of empiri-
cism has not been entirely eliminated in the present treatment.
There is the issue of the force-separation relation p(u), which we
have represented by the tail-dominated function in Eq. (6). Ideally,
we would like to be able to determine p(u) from first principles, but
this would require a more detailed understanding of the grain
bridging micromechanisms than is available at present. Only then
may we hope to specify what intrinsic material properties, other
than E and T, (see Eq. (5)), govern the toughness behavior. At that
stage we may be in a position to answer some of the more pressing
questions that arise in connection with observed T-curve trends.
Thus, what is the explicit dependence of toughness on grain size,
and (perhaps more intriguingly) what is it about the incorporation
of a glassy grain boundary phase which so dramatically washes out
the T-curve effect?”’ What role do internal microstresses play? It
is with such issues that our ultimate ability to tailor superior struc-
tural ceramics must surely rest.

There are other limitations of our analysis which warrant further
comment, particularly in relation to geometric effects. In our quest
for an analytical solution to the fracture mechanics equations we
have resorted to a questionable approximation of the crack-wall
displacement profile, Eq. (4). Quite apart from the fact that this
approximation is strictly justifiable only for traction-free walls,
i.e., in clear violation of the very boundary conditions that we seek
to incorporate into our analysis, it requires that we should not
attempt to extend the description beyond the confines of the near
field. Yet the results of our experimental observations in Part I
show bridging activity zones of order millimeters, which is by no
means an insignificant length in comparison to typical test speci-
men dimensions. Thus, contrary to the predictions of Eq. (11), we
should not be surprised to find a strong geometry dependence in the
measured T -curve response. Such a dependence has been observed
in practice, particularly in single-edge-notched beam specimens of
alumina with different starter notch lengths.'®™"® There are in fact
reported instances, in fiber-reinforced cements,?® where specimen
size effects can dominate the intrinsic component in the T-curve
characteristic. This is an added concern for the design engineer,
whose faith in the T-curve construction is heavily reliant on our
ability to prescribe T(c) as a true material property.

Notwithstanding the above reservations, let us return to the
question of crack growth discontinuities raised toward the end of
Section III. It was pointed out that we need to consider short
cracks, i.e., cracks smaller in length than the distance to the first
bridging sites, and indeed preferably smaller than the mean bridge
spacing itself. This is, of course, the domain of natural flaws. The
indentation method is one way of introducing cracks of this scale,
with a high degree of control, and will be the subject of a detailed
quantitative analysis elsewhere.* For the present, we simply con-
sider such a crack, but without residual contact stresses, subjected
to a uniformly applied tensile stress, o,. Figure 6 is a schematic
T-curve construction for this system, showing how the initial crack
at ¢; < d evolves as the applied stress is increased to failure. The
plot is in normalized logarithmic coordinates, to highlight the
response at small ¢. This same plotting scheme allows for a con-
venient representation of the applied stress intensity factor,
K. = Yo', as a family of parallel lines of slope ¥4 at different
stress levels. The sequence of events is then as follows: (i) at
loading stage 1, K, = K.(o,), the crack remains stationary;
(i) at stage 2, the crack attains equilibrium at K, = T(c), and
extends from an unstable state at I (dK,/dc > dT/dc) to a stable
state at J (dK,/dc < dT/dc); (iii) on increasing the load to
stage 3, the crack propagates stably through J to L up the T curve;
(iv) at stage 4, a tangency condition is achieved at M, whence
failure occurs. Thus our model has the capacity to account for the
first crack jump discontinuity (pop-in), as well as the enhanced
stability, we have come to associate with this class of material.

As a corollary of the construction in Fig. 6, note that the critical
loading condition at M is not affected in any way by the initial
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Fig. 6. T-curve construction for short crack ¢, (cy = ¢, = cy). Solid
curve is T(c) function. Inclined dashed lines 1 — 4 represent K,, load-
ing lines for successively increasing values of applied stress o,. Crack
“pops in” along IJ at stage 2 in the stressing, then progresses through
JLM along curve to failure at stage 4. Note failure stress is determined
exclusively by tangency condition at M, independent of initial
crack size.

crack size ¢;, provided this initial size falls within the range
¢y = ¢; = cm. This explains why the strengths of specimens con-
taining controlled flaws tend to level off at diminishing crack size
(indentation load).” Thus we have a region of “flaw tolerance,” a
desirable quality from the standpoint of engineering design.
Finally, we are led to believe that the notion of crack interface
bridging may have a far greater generality in the accounting of
T-curve behavior in ceramics than previously suspected. We have
singled out coarse-grained alumina for special study, but the earlier
indentation-strength studies on a wide range of materials suggests
a certain commonality in the underlying mechanisms of tough-
ening.”* At the same time, the validity of popular alternative
models, particularly those founded on the hypothesis of a dispersed
microcracking zone, is in serious doubt. These strong conclusions
derive primarily from the direct observations described in Part I.
The use of such observations as a means of identifying the re-
sponsible toughening mechanisms has been conspicuously absent
in the ceramics literature. There is a clear need to develop the
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present treatment further, especially in regard to the bridging force-
separation function. Further, the formulation should be extended to
include nonequilibrium states, where the T curve is expected to
manifest itself in intriguing ways, e.g., in fatigue limits and non-
unique crack velocity v(K,,) functions. Our model is just the first
step to a proper understanding of the toughness behavior of mate-
rials in terms of microstructural variables, which we must ulti-
mately control if the goal of the property-tailored ceramic is ever
to be realized.
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